Genetic or pharmacologic activation of Nrf2 signaling fails to protect against aflatoxin genotoxicity in hypersensitive GSTA3 knockout mice.

نویسندگان

  • Kevin H Kensler
  • Stephen L Slocum
  • Dionysios V Chartoumpekis
  • Patrick M Dolan
  • Natalie M Johnson
  • Zoran Ilic
  • Dana R Crawford
  • Stewart Sell
  • John D Groopman
  • Thomas W Kensler
  • Patricia A Egner
چکیده

Mice are resistant to aflatoxin hepatotoxicity, primarily due to high expression of glutathione S-transferases (GSTs), and in particular the GSTA3 subunit. Nuclear factor erythroid 2 related factor 2 (Nrf2) signaling, which controls a broad-based cytoprotective response, was activated either genetically or pharmacologically in an attempt to rescue GSTA3 knockout mice from aflatoxin genotoxicity. Genetic activation of Nrf2 signaling was attained in a GSTA3: hepatocyte-specific Keap1 double knockout (DKO) mouse whereas pharmacologic activation of Nrf2 was achieved through pretreatment of mice with the triterpenoid 1-[2-cyano-3-,12-dioxoleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im) prior to aflatoxin B1 exposure. Following oral treatment with aflatoxin, urine was collected from mice for 24 h and hepatic and urinary aflatoxin metabolites then quantified using isotope dilution-mass spectrometry. Although Nrf2 was successfully activated genetically and pharmacologically, neither means affected the response of GSTA3 knockout mice to chemical insult with aflatoxin. Hepatic aflatoxin B1-N(7)-guanine levels were elevated 120-fold in GSTA3 knockout mice compared with wild-type and levels were not attenuated by the interventions. This lack of effect was mirrored in the urinary excretion of aflatoxin B1-N(7)-guanine. By contrast, urinary excretion of aflatoxin B1-N-acetylcysteine was >200-fold higher in wild-type mice compared with the single GSTA3 knockout or DKO mouse. The inability to rescue GSTA3 knockout mice from aflatoxin genotoxicity through the Nrf2 transcriptional program indicates that Gsta3 is unilaterally responsible for the detoxication of aflatoxin in mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice.

Loss of NF-E2-related factor 2 (Nrf2) signaling increases susceptibility to acute toxicity, inflammation and carcinogenesis in mice due to the inability to mount adaptive responses. In contrast, disruption of Keap1 (a cytoplasmic modifier of Nrf2 turnover) protects against these stresses in mice, although inactivating mutations in Keap1 have been identified recently in some human cancers. Globa...

متن کامل

Soybean-Derived Phytoalexins Improve Cognitive Function through Activation of Nrf2/HO-1 Signaling Pathway

As soy-derived glyceollins are known to induce antioxidant enzymes in various types of cells and tissues, we hypothesized that the compounds could protect neurons from damage due to reactive oxygen species (ROS). In order to examine the neuroprotective effect of glyceollins, primary cortical neurons collected from mice and mouse hippocampal HT22 cells were challenged with glutamate. Glyceollins...

متن کامل

Dimethyl itaconate protects against lipopolysaccharide-induced endometritis by inhibition of TLR4/NF-κB and activation of Nrf2/HO-1 signaling pathway in mice

Objective(s): Endometritis is the inflammation of the uterine lining that is associated with infertility. It affects milk production and reproductive performance and leads to huge economic losses in dairy cows. Dimethyl itaconate (DI), a promising chemical agent, has recently been proved to have multiple health-promoting effects. However, the effects of DI on endometri...

متن کامل

Dysfunction of Nrf2 decreases KBrO3-induced oxidative DNA damage in Ogg1-null mice.

Transcription factor Nrf2 regulates production of antioxidants and protects cells from oxidative/electrophilic stresses. Paradoxically, glutathione, one of the Nrf2-regulated antioxidants, has been assumed to promote genotoxicity of KBrO3. To address this glutathione hypothesis, we examined roles Nrf2 plays in the cellular defense against KBrO3-induced oxidative damage using Nrf2-/-, Ogg1-/- an...

متن کامل

The transcription factor Nrf2 is a therapeutic target against brain inflammation.

Because chronic neuroinflammation is a hallmark of neurodegenerative diseases and compromises neuron viability, it is imperative to discover pharmacologic targets to modulate the activation of immune brain cells, the microglia. In this study, we identify the transcription factor Nrf2, guardian of redox homeostasis, as such target in a model of LPS-induced inflammation in mouse hippocampus. Nrf2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 139 2  شماره 

صفحات  -

تاریخ انتشار 2014